

Tetrahedron Letters 48 (2007) 6380-6383

Tetrahedron Letters

Michael addition-electrophilic quenching chemistry of maleimides using dialkylzinc reagents

Emmanuel Dardennes, Stefania Labano, Nigel S. Simpkins* and Claire Wilson

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

Received 30 May 2007; accepted 27 June 2007 Available online 4 July 2007

Abstract—Michael addition–electrophilic quench reactions of N-alkyl maleimides are possible using dialkylzincs in combination with a copper catalyst and a phosphoramidite ligand. Up to 55% ee has been achieved for one example (E = H) using a chiral ligand. © 2007 Elsevier Ltd. All rights reserved.

Although catalytic asymmetric addition of organometallics, such as Grignard reagents, organocopper species, organozincs and boronic acid derivatives, to α,β -unsaturated ketones is quite well established, this type of reaction has not been extensively explored with other types of carbonyl-containing Michael acceptors. Recently, several groups have disclosed extensions of this chemistry to asymmetric Michael addition of unsaturated esters, lactones, amides, lactams and related systems with promising levels of selectivity.

In connection with a proposed novel entry to erythrinan alkaloid natural products, we became interested in the asymmetric Michael addition reactions of *maleimides*, including the possibility of achieving selective addition–electrophilic quench sequences, for example, conversion of 1 into 3 via a metal enolate 2, Scheme 1.

Again this type of 'vicinal dialkylation' is well-known in the realms of enone additions,³ but we have been unable to locate a single example for maleimides—even to give racemic products. Indeed, only recently has the area of asymmetric addition to maleimides attracted significant attention, the Hayashi group having described highly selective addition of aryl groups by rhodium catalysed reaction of aromatic boronic acids (ArB(OH)₂), using chiral dienes, bis-phosphines or hybrid alkene–phosphine ligands.⁴ This method, although effective, has to date been carried out under aqueous conditions that make the development of an addition–electrophilic quench sequence like that shown in Scheme 1 problematic.

The lack of an existing solution to the problem outlined in Scheme 1, combined with the fact that variously substituted succinimide systems 3 are the component parts of significant natural products prompted us to explore this issue.⁵

Herein, we describe the use of a Feringa-type system, composed of dialkylzinc reagent (R₂Zn), Cu(OTf)₂ and a phosphoramidite ligand, to accomplish the type of

Scheme 1. Addition of a generic organometallic to a maleimide followed by electrophilic quench.

Keywords: Imide; Michael addition; Dialkylzinc; Phosphoramidite; Asymmetric catalysis.

* Corresponding author. E-mail: nigel.simpkins@nottingham.ac.uk

Table 1. Addition-quench reactions of maleimide 4

R	Electrophile	E	Product/yield (%)	Diast. ratio
Et	MeCOMe	C(OH)Me ₂	5a 86	_
Et	PhCHO	CH(OH)Ph	5b 99	60:40
Et	i-BuCHO	CH(OH)i-Pr	5c 96	80:20
Et	MeCHO	CH(OH)Me	5d 93	50:50
Et	CyclohexylCHO	CH(OH)cyclohexyl	5e 62	80:20
Et	MeOC(O)CN	CO ₂ Me	5f 75	_
Et	MeCOCl	COMe	5g 92	_
Et	PhCOCl	COPh	5h 85	_
Et	Ac_2O	COMe	5g 76	_
i-Pr ^a	PhCHO	CH(OH)Ph	5i 88	60:40

a Reaction carried out at 0 °C.

overall transformation shown in Scheme 1, including preliminary enantioselective variants.

Initially, we attempted Michael addition of commercially available Et_2Zn to an N-substituted maleimide, using a number of $Cu(OTf)_2$ -ligand combinations, and observed mainly polymerisation and some evidence of condensation products of the putative intermediate metal enolate 2. Indeed, it is well established that dial-kylzinc reagents are effective in forming polymers from maleimides, with apparent asymmetric induction if chiral additives are present.⁶

In their studies of dialkylzinc additions to unsaturated lactones, Hoveyda and co-workers had experienced similar difficulties and had solved them by including benzaldehyde as a suitable in situ electrophilic quench.^{2c} Pleasingly, this type of protocol also worked in the case of *N*-benzyl maleimide 4, but with a wider range of aldehydes, and also typical acylating agents, Table 1.⁷

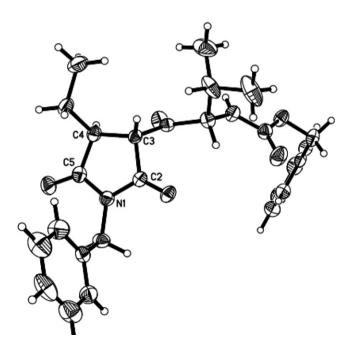
Aldol reactions proceeded in high yield to give products as the expected trans-isomers with respect to the five-membered imide ring, but as mixtures of diastereomers at any newly formed off-template carbinol centre. In the reactions involving acylation, the products were isolated as mixtures of carbonyl and enol forms. Most of our chemistry was conducted using Et_2Zn but the more

bulky ⁱPr₂Zn also participated in the reaction, albeit at 0 °C. Attempts to use Ph₂Zn were not successful.

At this point the stage seemed set for us to develop an asymmetric version of this reaction by using a chiral phosphoramidite such as 7.8 Using this ligand in place of 6 gave a number of products 5 as before—but no asymmetric induction was observed. We also established that, somewhat surprisingly, the reaction did not proceed at all when we used THF as the solvent—a finding that seems to parallel similar observations by Hoveyda in the lactone series.^{2c}

After considerable experimentation, we discovered that the addition of trimethylsilyl chloride to the reaction mixture, in place of the aldehyde or acylating agent, enabled conjugate addition of Et₂Zn to occur in THF. Furthermore, the use of phosphoramidate 7 enabled the isolation of the Michael addition product 8 in good yield and in moderate ee, Scheme 2.9

To our knowledge this is the first example of asymmetric addition of an alkyl group (in contrast to the aryl additions cited above) to a maleimide. Somewhat disappointingly, we were unable to fine-tune the selectivity of the process by either (i) changing the maleimide N-substituent to methyl, cyclohexyl, phenyl, 2-naphthylmethyl, or phenylethyl; (ii) changing the solvent to


Scheme 2. Asymmetric addition to maleimide 4.

Scheme 3. Regioselective and stereoselective substitution of imide 8.

various THF-toluene mixtures, or Et₂O or CH₂Cl₂; (iii) using alternative chiral ligands, including **9** and **10**.^{8,2c}

Although the range of racemic adducts 5 available directly from the reactions in toluene (Table 1) could not be formed enantioselectively this way, it proved possible to regenerate a lithium enolate from non-racemic 8 (55% ee) and quench with electrophiles to give the same products by a two-step process, for example, 5a, Scheme 3.

We also used this procedure to acylate the lithium enolate from 8 with the enantiomerically pure valine derived anhydride 11,¹⁰ thus providing adduct 12 as a diastereo-isomeric mixture (ca. 3:1 ratio, major isomer shown) that reflected the initial ee of 8 (55%). Crystallisation of the major isomer from the mixture allowed the

Figure 1. X-ray crystal structure of major diastereomeric product **12**. Ellipsoids are drawn at 30% probability level.

assignment of absolute stereochemistry of 12, and thus 8 as shown, following an X-ray structure determination, Figure 1.¹¹

A second correlation was also possible by reduction of **8**, using BH₃–SMe₂, to give the known compound, (3S)-1-benzyl-3-ethylpyrrolidine, which supported the assignment from the X-ray structure.¹²

In summary, we have described the first examples of Michael addition—electrophilic quenching of maleimides, using organozinc chemistry, and also the first example of an asymmetric addition of an alkyl group. The chemistry shows promise for the construction of natural product fragments (and their pharmaceutically important counterparts), and should also provide access to reduction products such as lactams and pyrrolidines.

Acknowledgements

We gratefully acknowledge support of this work from the following sources: the Engineering and Physical Sciences Research Council (EPSRC), for a research fellowship to E.D., and the European Union through the DIAMeCTS Marie Curie Training Site (Contract HPMT-CT-2001-00334), for support of S.L.

References and notes

- (a) López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem. Res. 2007, 40, 179; (b) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829; (c) Woodward, S. Angew. Chem., Int. Ed. 2005, 44, 5560.
- (a) Itoh, T.; Mase, T.; Nishikata, T.; Iyama, T.; Tachikawa, H.; Kobayashi, Y.; Yamamoto, Y.; Miyaura, N. Tetrahedron 2006, 62, 9610; (b) Kina, A.; Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889; (c) Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2005, 44, 5306; (d) Navarre, L.; Pucheault, M.; Darses, S.; Genet, J.-P. Tetrahedron Lett. 2005, 46, 4247; (e) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433; (f) Pucheault, M.; Michaut, V.; Darses, S.; Genet, J.-P. Tetrahedron Lett. 2004, 45, 4729.
- (a) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed. 2006, 45, 354; (b) Howell, G. P.; Fletcher, S. P.; Geurts, K.; ter Horst, B.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 14977; (c) Nicolaou, K. C.; Tang, W.; Dagneau, P.; Faraoni, R. Angew. Chem., Int. Ed. 2005, 44, 3874.
- (a) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628; (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int.

- Ed. 2005, 44, 4611; (c) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett. 2004, 6, 3425; See also: (d) Trenkle, W. C.; Barkin, J. L.; Son, S. U.; Sweigart, D. A. Organometallics 2006, 25, 3548.
- For examples, see: (a) Isaka, M.; Prathumpai, W.; Wongsa, P.; Tanticharoen, M. Org. Lett. 2006, 8, 2815; (b) Lehmann, A.; Brocke, C.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem. 2006, 3205, and references cited therein; (c) Fredenhagen, A.; Tamura, S. Y.; Kenny, P. T. M.; Komura, H.; Naya, K.; Nakanishi, K.; Nishiyama, K.; Sugiura, M.; Kita, H. J. Am. Chem. Soc. 1987, 109, 4409; (d) Needham, J.; Kelly, M. T.; Ishige, M.; Andersen, R. J. J. Org. Chem. 1994, 59, 2058; See also: (e) Bartoli, G.; Bosco, M.; Carlone, A.; Cavalli, A.; Locatelli, M.; Mazzanti, A.; Ricci, P.; Sambri, L.; Melchiorre, P. Angew. Chem., Int. Ed. 2006, 45, 4966, and references cited therein. See also Ref. 10.
- Hori, K.; Yoshimura, K.; Ohno, H.; Onimura, K.; Oishi, T. Tetrahedron 2003, 59, 6301.
- 7. Typical procedure for multicomponent 1,4-addition-electrophilic quench (Table 1). A solution of copper triflate (6 mg, 16 μmol, 0.03 equiv) and phosphoramidite 6 (0.06 equiv) in toluene (3 ml) was stirred for 1 h at room temperature under argon. To this solution the maleimide 4 (0.53 mmol, 1.0 equiv) was added and the reaction mixture was cooled to -78 °C. The electrophile (10 equiv) was added and then a solution of Et₂Zn in toluene (1.6 mmol of a 1.1 M solution, 3.0 equiv) was added. After 1 h the reaction was quenched by addition of a saturated solution of NH₄Cl(aq) (2 ml), the product extracted into Et₂O (2×10 ml), dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 8:2) to give the products in the yields indicated.

Selected data (Table 1). Compound (5a) as a clear oil (126 mg; 86%); m/z (ESI) calculated for $C_{16}H_{21}NNaO_3$ 298.1419 found 298.1400; δ_H $(CDCl_3, 270 \text{ MHz}) 0.24 \text{ (t, 3H, } J = 8.3, CH_3CH_2), 0.43 \text{ (s, }$ 3H, Me), 0.59 (s, 3H, Me), 1.20 (m, 2H, CH_3CH_2), 2.04 (m, 2H, H-3 and H-4), 4.37 (s, 2H, CH₂Ph), 7.30 (m, 5H, Ar); $\delta_{\rm C}$ (CDCl₃, 67 MHz) 178.9 (C=O), 178.7 (C=O), 135.6 (C), 128.6 (CH), 128.5 (CH), 128.0 (CH), 72.0 (COH), 54.8 (C3), 44.2 (C4), 42.3 (CH₂Ph), 27.4 (Me), 25.8 (Me), 24.5 (CH₂, Et), 10.2 (CH₃, Et); v_{max} (CHCl₃)/cm⁻¹ 974, 1348, 1379, 1393, 1693, 1769, 2879, 2937, 2969, 3505, 3605. Compound (5b) as a clear oil (170 mg; 99%); m/z (ESI) calculated for C₂₀H₂₁NNaO₃ 346.1419, found 346.1412; minor diastereoisomer $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.48 (t, 3H, $J = 7.4 \text{ Hz}, \text{ C}H_3\text{C}H_2$, 1.32 (m, 2H, CH₃CH₂), 2.78 (dd, 1H, J = 2.7, 4.3, H-4), 2.85 (ddd, 1H, J = 4.3, 5.4, 6.9, H-3), 4.65 (d, 1H, J = 14.4, CH_2Ph), 4.70 (d, 1H, J = 14.4, CH_2Ph), 5.48 (d, 1H, J = 2.7, CHOH), 7.20–7.40 (m, 10H, Ar); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 179.3 (C=O), 177.8 (C=O), 140.9 (C), 135.7 (C), 128.7 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 125.2 (CH), 71.5 (CHOH), 52.9 (C3), 42.3 (C4), 40.7 (CH₂Ph), 23.7(CH₂, Et), 9.9 (CH₃, Et); major diastereoisomer $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.67 (t, 3H, J = 7.4, CH_3CH_2), 1.19 (dqd, 1H, J = 5.6, 7.4, 14.7, CH₃CH₂), 1.45 (m, 1H, CH₃CH₂), 2.48 (m, 1H, H-3), 2.85 (dd, 1H, J = 4.8, 8.2, H-4), 4.60 (d, 1H, J = 14.1, CH₂Ph),4.65 (d, 1H, J = 14.1, CH_2Ph), 4.88 (d, 1H, J = 8.2, CHOH), 7.20–7.40 (m, 10H, Ar); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 178.5 (C=O), 178.4 (C=O), 139.4 (C), 135.4 (C), 128.6

- (CH), 128.5 (CH), 128.5 (CH), 128.4 (CH), 127.6 (CH). 126.4 (CH), 74.3 (CHOH), 51.3 (C3), 43.2 (C4), 42.2 (CH_2Ph) , 22.9 (CH_2, Et) , 9.8 (CH_3, Et) ; v_{max} $(CHCl_3)$ / cm^{-1} : 1055, 1347, 1396, 1694, 1770, 2878, 2936, 2967, 3496, 3611. Compound (5h) as a yellow oil (145 mg; 85%); m/z(ESI) calculated for C₂₀H₁₉NO₃ 322.1443 found: 322.1441: $\delta_{\rm H}$ (CDCl₃, 270 MHz) 0.20 (t, 3H, J = 8.4, CH₃CH₂), 1.40 (dqd, 1H, J = 5.5, 8.4, 16.7, CH₃CH₂), 1.07 (m, 1H, CH_3CH_2), 3.11 (m, 1H, H-4), 4.21 (d, 1H, J = 5.1, H-3), 4.32 (d, 1H, J = 15.8, CH_2Ph), 4.43 (d, 1H, J = 15.8, CH_2Ph), 7.30–7.50 (m, 8H, Ar), 8.21 (m, 2H, Ar); δ_C (CDCl₃, 67 MHz) 192.8 (C=O), 178.1 (C=O), 172.1 (C=O), 135.6 (C), 135.3 (C), 134.2 (CH), 133.7 (CH), 130.1 (CH), 129.7 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 127.9 (CH), 54.2 (C3), 44.7 (C4), 42.8 (CH₂Ph), 23.5 (CH₂, Et), 10.0 (CH₃, Et); ν_{max} (CHCl₃)/ cm⁻¹: 895, 1071, 1096, 1292, 1319, 1348, 1395, 1698, 1777, 2878, 2934, 2966.
- 8. For overviews, see: (a) Howell, G. P.; Minnaard, A. J.; Feringa, B. L. *Org. Biomol. Chem.* **2006**, 4, 1278; (b) Feringa, B. L. *Acc. Chem. Res.* **2000**, 33, 346; For preparation of the ligands, see: (c) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B. L. *Tetrahedron* **2000**, 56, 2865.
- 9. Procedure for asymmetric synthesis of 8. A solution of copper triflate (6 mg, 16 µmol, 0.03 equiv) and phosphoramidite 7 (17 mg, 0.06 equiv) in THF (3 ml) was stirred for 1 h at room temperature under argon. To this solution maleimide 4 (0.53 mmol, 1.0 equiv) was added and the reaction mixture was cooled to -78 °C. TMSCl (10 equiv) was added and then a solution of Et₂Zn in toluene (1.6 mmol of a 1.1 M solution, 3.0 equiv) was added. After 1 h the reaction was quenched by addition of a saturated solution of NH₄Cl(aq) (2 ml), the product extracted into Et₂O $(2 \times 10 \text{ ml})$, dried (MgSO₄) and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 8:2) to give imide 8 as a clear oil (106 mg; 92%); $[\alpha]_D^{25}$ –5.4 (c 0.75, CHCl₃); m/z (ESI) calculated for C₁₃H₁₅NNaO₂ 240.0995 found 240.0990; δ_H $(CDCl_3, 270 \text{ MHz}) 0.24 \text{ (t, 3H, } J = 8.2, CH_3CH_2), 0.96$ (dd, 1H, J = 8.3, 16.3, CH₃CH₂), 1.31 (m, 1H, CH₃CH₂), 1.84 (dd, 1H, J = 2.5, 18.1, H-4), 2.28 (m, 2H, H-3 and H-4), 4.35 (s, 2H, C H_2 Ph), 7.20–7.40 (m, 5H, Ar); δ_C (CDCl₃, 67 MHz) 179.5 (C=O), 176.3 (C=O), 135.9 (C), 128.7 (CH), 128.6 (CH), 127.9 (CH), 42.3 (CH₂Ph), 41.1 (C3), 33.8 (C4), 24.3 (CH₂, Et), 10.8 (CH₃, Et); v_{max} (CHCl₃)/ cm⁻¹1156, 1180, 1315, 1340, 1403, 1433, 1713, 1772, 2878, 2936, 2967, 3036, 3068. The ee was determined on a chiracel OD column using 5% PrOH-hexane as eluent and a flow rate of 0.3 ml/min; elution times were 63.4 min (minor) and 67.1 min (major).
- Pohlmann, J.; Lampe, T.; Shimada, M.; Nell, P. G.;
 Pernerstorfer, J.; Svenstrup, N.; Brunner, N. A.; Schiffer,
 G.; Freiberg, C. Bioorg. Med. Chem. Lett. 2005, 15, 1189.
- 11. Crystallographic data (excluding structure factors) for the structure in this Letter have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 646534. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).
- Bettoni, G.; Celluci, C.; Berardi, F. J. Heterocycl. Chem. 1980, 17, 603.